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LETTER TO THE EDITOR 

Dynamics of surface roughening in disordered media 
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t Department of Atomic Physics, E6tv6~ University, Budapest. Puskin U 5-7,1088 Hungary 
$ Department of Applied Physics, Faculty of Engineerins Nagoya University, Nagoya 
464-01, Japan 

Received 5 January 1993 

Abstract. We present results on the roughening of growing interfaces obtained from a 
Kardar-Parisi-Zhang (KPZ) type continuum equation with quenched additive noise, rep- 
resenting frozen in disorder. Close to the pinning transition, for the exponents describing 
respectively the temporal and the spatial scaling of the surface from numerical integration 
in 1 + 1 dimensions we obtain p = 0.61 * 0.06 and CL = 0.71 10.08 up to a crossover time. 
These estimatm are in good agreement with the theoretical prediction p =$ and 01 = a  we 
derive from a dimensional analysis of the equation. 

The roughening of growing interfaces subject to random perturbations is a very common 
phenomenon in nature and technologies [l-31. There are two major types of this kind 
of growth: roughening (i) in the presence of temporally uncorrelated fluctuations and 
(ii) in disordered media, representing quenched noise. The first case is theoretically 
better understood due to much recent interest in the Kardar-Paris-Zhang (KPZ) [4] 
and closely related equations. Less is known ahout the dynamics of interfaces whose 
motion is dominated by the pinning forces present in an inhomogeneous medium. 
Since this case is relevant in many experimental situations such as two phase h i d  
Bows in porous media [S-81, the motion of domain walls in magnetically ordered 
systems [ 9 ]  or the pinning of charge density waves [lo, 111, it is of great importance 
to understand the dynamics of such growing surfaces. 

Studies of kinetic roughening with quenched noise have been concentrating on the 
two exponents 01 and p describing respectively the static and time dependent scaling 
of the surface width in the pinning dominated regime. The few very recent results for 
these exponents obtained from experiments, theory and simulations have not led to a 
consistent picture yet. In the most studied (1 i 1)-dimensional case the experiments on 
viscous flows gave estimates 0.63 < (Y (0.81 [5,61 and p = 0.65 161 and p = 0.45 [SI. 
The theoretical value for the exponent p was suggested by Parisi [ 1 I ]  and Nattermann 
et ai [12] to be $. In a recent preprint Kaganovich [13] (using a power counting type 
approach of Hentschel and Family [14]) proposed that the exponents corresponding 
to the KFZ equation with quenched noise are p = 0.6 and (I = 0.75. Finally, the simulation 
of various growth models and model equations resulted in diverse values as well. Two 
closely related growth models [15, 161 which were interpreted in terms of directed 
percolation yielded (I and p both close to 0.63. 6 = 0.75 was obtained from the model 
of Parisi [ll]. The numerical integration of an Edwards-Wilkinson [ 171 type continuum 
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equation with additive quenched noise led to the conclusion that a crosses over from 
1 to 0.5 as the velocity of the surface is increased [IS]. On the other hand, from the 
numerical study of an equation with quenched multiplicative noise a robust scaling in 
time with an exponent p 30.65 was found [19]. One of the important open questions 
is the dynamics of the quenched version of the KPZ equation which, as such, has not 
yet been numerically investigated. The above results are assumed to describe a growth 
regime dominated by pinning forces which can completely stop the moving interface 
in an important limiting case called pinning transition. 

In this letter we present the first simulation results on the temporal scaling (p )  of 
growing interfaces obtained from a KPz-type continuum equation in I + 1-dimensions 
with quenched additive noise, representing frozen in disorder. We find a rich behaviour 
which is, in part, consistent with some of the recent experimental and simulational 
results. Close to the pinning transition p =0.61 and a -0.71 are obtained in very good 
agreement with our dimensional analysis of the equation yielding p = (4- d)/(4+ d )  = 
3/5 and a = (4- d)/4, where d is the dimension of the initially Bat surface. 

To describe the roughening of a moving interface in random media we consider 
the quenched version of the KPZ equation 

Jh A - = ~ V ~ h + - ( v h ) ~ +  v + q ( r ,  h )  
J t  2 

where h is the position of the surface above the point r of the d-dimensional substrate 
at time 1, v and A are constants. In (1) (q(r ,  h ) )  = 0 represents quenched noise whose 
correlator in the continuum limit is formally given by (q ( rG,  hG)v(ro+r,  ho+ h' ) )=  
D6(h')sd(r),  where D is a constant. As we shall see, in the simulations and the 
theoretical interpretation of the numerical results we have to consider that the discretiz- 
ation of equation (1) corresponds to a somewhat modified form for the noise correla- 
tions. 

The control parameter in this equation is the driving force U; above a critical U, 
the interface keeps moving for arbitrary large times, however, if U <  U, the interface 
after some characteristic time becomes pinned, i.e. due to the randomly distributed 
negative values of q it stops completely. For A = O  (1) is equivalent to the Edwards- 
Wilkinson equation with quenched disorder. This latter equation has been studied 
more intensively, in part, because it has been assumed that the nonlinear term of the 
KPZ type equation is automatically generated in the EW version by the noise which 
depends on h in a highly nonlinear way. Since our dimensional analysis indicated that 
the two equations may exhibit different scaling behaviour we decided to simulate the 
nonlinear equation directly. 

The numerical integration of (1) for the (l+l)-dimensional case was carried out 
using a simple single step method (see, e.g. [20]). The discretized version of (1) is 

h(x,t+At)=h(x,t)+At{h(x-l,t)-2h(x,t)+h(~+l,t)} 

3 + A t  - ( h ( x + l ,  t ) - h ( x - l ,  t ) ) 2 + u + q ( x , [ h ( x ,  t ) ] )  1; 
where [ .] denotes integer part, and q was chosen to be uniformly distributed on the 
interval ( -4 ,  !). We assumed that as the surface was moving between two grid points 
in the vertical direction, it experienced the effect of the fixed value of q associated 
with the closest grid point below the surface. Obviously, this does not correspond to 
a S(h') kind of correlations, on the other hand, this is the only reasonable choice in 
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the framework of the given method. In this respect the lattice spacing a ( a  = 1 in the 
simulations) represents the characteristic length (of density correlations) in the 
inhomogeneous medium. 

In order to produce simulations for long times we used At = 0.1, and At = 0.01. We 
checked our choice for Af by making runs for smaller A t  and comparing the results. 
In most of the cases we used system sizes L = 1300 and I = 5000 lattice points along 
the x direction, and A = 1. 

The following quantities were determined: (i) the surface width w ( t ) =  
( ( h 2 ) - ( k ) Z ) 1 ’ Z  as a function of time, (ii) the average position of the interface k ( f )  = 
(h (x ,  f)), and (iii) the surface width v ( x )  as function of x in the saturated regime (in 
which w(t)=const). 

In figure 1 we show snapshots of the growing surface near pinning. It can be clearly 
seen that after ‘breaking away’ at a locally almost pinned point the surface grows 
isotropically in both directions. 

For A = 1 we found that the pinning threshold was U: = 0.05. Just above this value 
we observed a scaling regime of w ( f ) -  to. The exponent /3 can be obtained by fitting 
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Figure 1. Subsequent ‘snapshots’ of the evolving surface for L = 1300 obtained by numeri- 
cally integrating equation (2). (a) KPZ case for v = 0.05; (b) for v =0.031- vc; (c) EW case 
(A=O)foru=O.ZOS;  (d)for v = 0 . 1 9 ~ v o .  
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Figore 1. (continued) 
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Figure 2. ?be time dependence of the surface width w in the quenched version of the KPZ 
equation for L=1300 and u=O.O4. 
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a straight line on a log-log plot of w ( t )  for U = U,. From figure 2 we conclude that the 
dynamics of surface roughening is described by 

f l  = 0.61 *0.06 

in the case of the discretized, quenched version of the KPZ equation. This value is 
direrent from that given in [ l l ,  121. 

A further important aspect of the growth is the geometry of the surface in the 
stationary regime. We found that as the system size becomes larger the behaviour of 
the surface approaches self-affine scaling with a static exponent close to II = 0.71. Thus, 
our results suggest that this value may not be an effective exponent due to crossover 
[18], but the result of a genuine scaling regime. Figure 3 shows the corresponding 
results for L = 5000. If, for example, L = 1300 the scaling part of the plot is much shorter. 

log 2 
Figure 3. The behaviour of the surface width w (KPZ case) for L = 5000 and U = 0.04 as a 
function of the length x over which its average value was calculated. The middle part of 
the plot indicates self-affine scaling with an exponent a =0.71. 

For A = O  (EW equation) we found that close, but above the pinning threshold 
(u,=O.19) the dynamics of the interface roughening is described by an effective 
exponent 0.62 as well (see figure 4). However, if we get closer to U,, for longer times 
a continuously growing effective exponent can be observed. This explains an earlier 
numerical estimate p ~0.75 [ll].  

From the h ( t )  data we calculated the asymptotic velocity U,= Iim,+- Jh/Jt for the 
EW case. It vanishes at U=U, and for u>u, it scales as u. - (u -u . )~  [11,12]. This 
allows us to extract the real pinning threshold U, from simulation data. We did this 
for L =  1300 by finding the vc value providing the best fitting to the scaling relation. 
We obtained U,= 0.183 zt0.005 and f3 = 0.64*0.08 (see figure 5 )  in agreement with the 
prediction of Natterman et a[ f3 = $ for d = 1 [12]. 

In order to give a theoretical interpretation of the above numerical results we have 
carried out a detailed dimensional analysis of equation (1). To proceed we first need 
to point out that in real materials and the simulations the correlations describing the 
disorder are not delta function like. In particular, in the numerical studies the surface 
is discretized in the horizontal direction (along the substrate) and moves continuously 
in the vertical direction. Since the noise is discretized in both directions, as the surface 
advances, it experiences a correlated effect of the local value of q in the growth 
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Figure 4. The temporal scaling of the surface width w in the quenched version of the EW 
equation for L = 1300 and U = 0.205. 
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are such that [ H I  = [h] and [ R ] = [ r ] .  Using these relations we can also express [ U ]  
and [ V I  through [ A I ,  [A] and [ t ] .  The dimension of the squared surface width 
w2(L, t )  = (h2) - (h)' over a region of linear extent Lis [ HI2.  Therefore, the dimension- 
less width w2(L, t)/H2 has to be the function of the dimensionless variables L / R ,  
G/(H/t) and v / ( R Z / t ) ,  where G =  U-w,. After some trivial algebra (applied in order 
to eliminate 2 from the term corresponding to v / ( R 2 / f ) )  we get 
,,,2(~, t )  = ~-2d/(4+d)~l/(4+d)~2(4-d)/(4+d) 

From the above expression it follows that for fixed v2diJ4-d/A2Ad and f<< f * =  
(G44+dAd/A2)-'/2d the scalings w(L,  1)- t B  and w(L,  t ) - L m  are satisfied with 

(5 )  
4 - d  p ~ 4 - d  a =- 

4 4 + d  ' 

Above the crossover time f* the standard KPZ type behaviour sets in. It should be 
noted that the temporal scaling of w2 can be observed for t much smaller than the 
saturation time f , (L ) ,  while the spatial scaling holds for t >> f , (L ) ,  where t,(L) = 
,5(4+d)/4 /(A2A)'/4. Therefore, dc=4 is the upper critical dimension of the problem in 
agreement with the previous theories (see, e.g. [10-12]). However, our values for the 
a and p represent a universality class distinct from that of the standard KPZ equation 
and agree with a recent proposition by Kaganovich [13]. In particular, for the much 
studied d = 1 case the exponents are 

a =$=0.75 @ =$= 0.6. (6) 

In conclusion, our results indicate that the quenched version of the KPZ equation 
represents a new universality class with a well defined scaling in time. The prediction 
p =?  IS ' in good agreement with our estimate obtained from the numerical integration 
and is close to the related previous results p 0.63 [15,16] and p = 0.65 [6]. The above 
dimensional analysis can be pursued further to include crossover effects. This will be 
presented in a subsequent paper. 
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